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Abstract

Some possible coupling functions w(¢) and their behaviors are dis-
cussed in the generalized scalar-tensor theory of gravitation in the
context of the Machian cosmological model with the condition ¢ =
O(p/w). The discussions are restricted to the homogeneous and isotropic
universe with a perfect fluid (with negative pressure). We propose
w(p) = n/(& — 2) for the coupling function. The parameter £ varies
in time very slowly from £ = 0 to £ = 2 because of the physical evo-
lution of matter in the universe. When ¢ — 2, the coupling function
diverges to —oc and the scalar field ¢ converges to G5!. The present
mass density is precisely predicted if the present time of the universe
is given. We obtain gy = 1.6 x 10729 g.em ™3 for tg = 1.5x 1010 yr. The
universe shows the slowly decelerating expansion for the time-varying
coupling function.
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In the previous paper [1], we obtained the Machian cosmological solution
satisfying ¢ = O(p/w) for the homogeneous and isotropic universe with a
perfect fluid (with negative pressure) in the Brans-Dicke theory [2]. We
found that the gravitational constant surely approaches to constant when the
coefficient y of the equation of state goes to —1/3 for the closed model. If we
assume that the present mass density p, is identical to the critical density
pe, taking |w| ~ 10% [3] into account, we get the difference ¢ of the coefficient
v from ~1/3 (e = 3y + 1) has a value of order 1072 to support the present
gravitational constant G. These parameters lead to the time-variation of

the gravitational constant ‘G /G ( ~ 1078 yr~! which is compatible with

the recent observational data [4]. Thus, it avoids the difficulty of varying
gravitational constant in the Brans-Dicke theory to introduce a perfect fluid
with negative pressure.

The closed model (k = +1) of this Machian solution is valid for the
coupling parameter w satisfying w/2 + B < 0, where B = —3/(§ + 2)(£ — 2)
and £ = 1 — 3y. The above parameter ¢ ~ 1073 gives B ~ 10° which
means w < —10% at present. This situation may explain the reason why the
coupling parameter |w| is so large at present. The expansion parameter a(t) is
explicitly a linear function of ¢, but its coefficient depends on the parameter £.
As the parameter £ goes to 2 through the quasi-static process, the coeflicient
of the expansion parameter increases very slowly for the constant coupling
parameter w, and so the universe exhibits the slowly accelerating expansion
at present, which is also compatible with the recent measurements [5] of the
distances to type la supernovae.

The above result (w/2 + B < 0) strongly suggests that the coupling
parameter w of the Brans-Dicke scalar field should vary in time as the universe
expands. If not so, the constant coupling parameter w should be infinite from
the beginning of the universe. A tentative conjecture is like w(¢(t)) ~ B(£).
The coupling parameter w is almost constant and varies in time very slowly
through the quasi-static process of the parameter £. Therefore the time-
variation of the coupling parameter depends on the physical evolution of
matter in the universe.

In the present paper, we discuss the coupling function w(¢) and its be-
havior in the generalized scalar-tensor theory of gravitation [6]-[8] in the
context of the Machian cosmological model. We consider the homogeneous
and isotropic universe filled with a perfect fluid with pressure. We require
the Machian postulate that the cosmological scalar field ¢ should have the
asymptotic form ¢ = O(p/w) for the large enough coupling function w. The
procedure developed in the preceding paper [9] gives a simple and effective
method to seek the Machian cosmological solution.
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The action [6]-[8] for the generalized scalar-tensor theory of gravitation
is described in our sign conventions (¢ = 1) as

5= [ dtov=gl-oR+16mL - (‘” 6 6., )

where R is the scalar curvature of the metric g,., ¢(z) is the Brans-Dicke
scalar field, w(¢) is an arbitrary coupling function, and L,, represents the
Lagrangian for the matter fields. The variation of Eq.(1) with respect to g,.
and ¢ leads to the field equations

R = 3P0 = ST 2 (0,0, Jaus10°)
_%((b, v gul/[kb) > (2)
_ dw ()
9o~ [T+ g o] o

where T}, is the energy-momentum tensor, 7' is the contracted energy-
momentum tensor, and O denotes the generally-covariant d’Alembertian
U¢ = ¢*,. These field equations satisfy the conservation law of the energy-
momentum

T =0. ()

The line element for the Friedmann-Robertson-Walker metric is
ds? = —dt* + a®(t)[dx* + o (x)(d6? + sin® Bdyp?)] , (5)

where
siny  for k= +1 (closed space)

olx) =% x for k=0 (flat space) (6)
sinthy for k= —1 (open space).
The energy-momentum tensor for the perfect fluid with pressure p is given
as
T = =P — (p + DUy, , (7)
where p is the mass density in comoving coordinates and u* is the four
velocity dz*/dr (7 is the proper time). The nonvanishing components are
Too = —p, Tis = —pgi; (¢ # 0), and its trace is T = p—3p for the homogeneous
and isotropic universe.
The energy conservation Eq.(4) leads to the equation of continuity

p 432 (o) =0, ®)
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Let us suppose the equation of state for the perfect fluid

p(t) = vp(t), 9)

where —1 £ v £ 1/3. Now we are rather interested in the "negative” pres-
sure. Taking the equation of state into account, we can integrate the equation
of continuity Eq.(8) and get

p(t)a™(t) = const, (10)
where n = 3(y + 1), which has n = 4, n = 3, and n = 2 for the radiation
era, the matter-dominated era, and the negative pressure v = —1/3 era
respectively.

The independent field equations which we need solve simultaneously are

N2
3 (.2 _w(g) (¢ ¢  8mp 8r(p—3p)1
ﬁ(a +l€)— 5 (a) +¢+7———-——3+2w(¢)¢, (11)
d
" b3t =—1  |an(p—3p) - (@) 2 (12)
" T3 VTP T T4 P
According to the postulate ¢ = O(p/w), we expect a solution described
as
8w
P(t) = m‘)q’(t) (13)

where ®(t) is an unknown function of ¢ and may generally include w as the
following form

D(t) = Do(t) + O(1/w). (14)
In the Brans-Dicke theory, we know that ®(¢) should not include w for the
perfect fluid model [9].

The most important thing is to determine an arbitrary coupling function
w(¢). There are many literatures, for example [10}-[15]. We examine some
possibilities in the Machian peoint of view. First, if the coupling function
w(¢) obeys

25— ot (15)
we can adopt the similar procedure {9] for the Machian cosmological solution
in the Brans-Dicke theory. The coefficient 7 is an arbitrary constant.

Let us assume that the following relation is satisfied approximately enough
because the coupling function w(¢) is almost constant or large enough:

8m

o(t) = m‘i’(ﬂ ~ (16)
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We need check later whether this simplification is valid or not for the obtained
Machian solution. Taking Eq.(16) into account, we get from Egs.(12) and
(15) .

. a -

b+320= (e +n)p, (1)

where £ =1 — 3y or £ = 4 —n. The function ®(t) should not include w
similarly in the Brans-Dicke theory for the Machian solution because the
right-hand side of Eq.{15) does not depend on w. Thus the ratio a/a should
not also include w, and so we find for the expansion parameter

a(t) = A(w)al(t), (18)

where A and « are arbitrary functions of only w and t respectively.
Taking Egs.(13), (16), and (18), we obtain from Eq.(11) after elimination
of ¢ by Eq.(12)

[0 4] oo ) (2)- 2 o

We are not interested in the flat space (k = 0) here. For the closed and
the open spaces (k = £1), if we require that Eq.(19) is identically satisfied
for all arbitrary values of w, we find that the coefficient A(w) must have the
following form

3 (|w(¢)

Aw) | 2 +B

where B is a constant with no dependence of w. Thus we get

. 2 .
w | [® dp 1| [fa\? a\ (& B+n)p , .B
2 <<I>) T MG _3<a> +3<a> (@) 5 TR

) (20)

(21)
where we introduce a notation j = —1 for w/2 + B < 0 and § = +1 for
w/2+ B > 0. Again, by requiring that Eq.(21) is identically satisfied for all
w, we obtain two identities,

8\ 4 1
p .
— —=kj— 2
(@) +3 =ki, (22)

and .
3<g>2+3<g) (%)-m—qf’)fz-kjg (23)
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We are convinced of the existence of the following type of solutions on
the analogy of the previous paper [1]:

B(t) = Cp(t)t?, (29)
a(t) =bt, (25)
where coefficients ¢ and b are constants respectively, and in fact we find
£+
(= ; 26
G 9
+ , forki=—1land 0 € <2

b2

Il

T -2+ nt2)E—2n
&

, forkj=4+land2 <& <4, (27)

(€-2)[&+(n+2)¢—21]

and

B n€* — (51 + 3)€ + 3n (28)

(€ —2) [+ (n +2)¢ — 21]
from Eqs.(17), (22), and (23) successively.

For the closed space (k = +1), we require 7 > O for ( < O when 0 £ £ < 2
to give the attractive gravitational force (G > 0). On the other hand we
require n < 0, for the coefficient b is real when 0 < £ < 2. So we encounter
a contradiction. Let us adopt the other alternative that the coefficient 7 is
a linear function of £ (n = n,€ + 1y). We put 7y = 0 for the finite ¢ when
£ = 0. Thus we replace Eq.(15) to

dw(g) -2
0§~ smnep(t) = o (o= 39) - (29)
After similar discussions, we obtain as a solution

C=(n+1)/E-2), (30)
s [ 1€ -2)E—&), forkj=—-land0<¢<2
’ :{1/(5—2)@—51), forkj- ande<e<a, OV

and
B =[n,(6 =56 +3) = 3]/(€ = 2) [(n; + 1)€ = 2(m ~ 1)], (32)

where £, =2(n, — 1)/ (n; +1).
We require —1 < 7, < 1 for { < 0 and the real b when 0 £ £ < 2
(k = +1). By analyzing the time-dependences of the solution, we get from
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Eq.(29)
dw méB+2w) 1

L 60 Sl i 33
6+ DE-D0 (%)

After integration, we obtain the coupling function
13 4 2w(¢)| = Cop(t)Eme/n+DE=1 (34)

where C' is an integral constant. However, we realize that this coupling
function w(¢) is not consistent with Eq.(16) because w(¢) varies in time too
rapidly.

As the next alternative, we suppose

da%¢)¢2:: 8mnp(t)

dé 3+ 2w(0)

to suppress the rapid time-variation of w(¢). In this case, the right-hand side
of Eq.(17) includes the coupling function, and so the function ®(¢) may also
include w(®) as Eq.(14). From now on, we restrict our calculations to the first
order in 1/(3 +2w). At least for the present time (jw| 2 10%), this restriction
would give a good approximation. For the first order in 1/(3 + 2w), the
function ®(t) does not include w(¢). Thus we obtain the Machian solution
for the first order in 1/(3 + 2w) again,

(=1/(6-2), (36)

(35)

b (4—€H712, forkj=—-1land0< € <2 57
T (-2 forkj=+4+1land2< <4, (37)

and
B=-3/(§-2)({+2). (38)

In Egs.(33) or (34), the scalar field ¢ includes the coupling function w(¢)
itself. This expression causes ambiguities, and so let us define another func-
tion of ®

w(¢) = w(®). (39)
Taking this expression into account, we estimate Eq.(35) by the Machian
solution for the first order in 1/(3 + 2w) and get

do n 1

70 £33 (40)

which leads to 7

£ 2

=(®) = In|®(t)| + W, (41)
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where W is an integral constant.

When ¢ — 2, the time-dependence of p(t) goes to t~2 and so p(t)t* —
const. However, the coefficient ¢ diverges to the minus infinity as £ — 2 in
the range of 0 < £ < 2. So the function ®(t) = {p(t)t? also diverges to the
minus infinity very slowly as £ — 2 in the same range. Thus, if 7 > 0, the
coupling function w(®) diverges to the minus infinity when £ — 2 in this
range. On the other hand, when t — 0 and £ — 0, ®(t) and w(®P) also
diverge to the minus infinity. The time-derivative of the scalar field ¢(¢) is
described in the present solution as

; 8m 16 i
)= ——— A
o(t) 3+ 2w (d) 3+ 2w(®)E—-2]
and the second term of the middle bracket (~ 1/1In|®(¢)|) goes to zero when
&€ — 0 and £ — 2. Therefore the assumption Eq.(16) is consistent in our
Machian solution near £ = 0 and £ = 2. The coupling function Eq.(41)

satisfies the constraint

(t) 1 (42)

=0y B <, (43)
which leads to
nin |@(B)] + (§ —2)W > 6/(£ +2), (44)

if n > 0 in the range of 0 < £ < 2 (at least near £ = 0 and & = 2, or for the
appropriate W). The behavior of the scalar field becomes
2(t) p(t)t?
oty ~(£—2 = — const — 0 45

O~ €] = micoma )
when & — 2. The scalar field is approaching to const as the parameter £ — 2
and its value gradually converges to zero.

The expansion parameter is expressed as

6 1/2
a(t) = Alw)bt = t 46
O =AW= | SEEroe - - 1o
for the closed space (k = +1) in the range of 0 £ £ < 2. Taking w(®) — —oco
when t — 0 into account, we get a(t) =~ 0 near £ = 0. By replacing 7 to £,
we might be able to improve the situation, that is,

dw(g) .2 8mnyi(p—3p)
i ° T T3y 2w(e) (47)
and thus
o (®) = é”i S In[@(0)] + W (48)
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When we consider the case near £ = 2, we encounter a severe trouble: the
coefficient of a(t) in Eq.(46) converges to zero as ®(t) — —oo when t — oo.
To satisfy the constraint Eq.(43), the coupling function w(®) must decrease
faster than B ~ 1/(§ — 2) when £ — 2. On the other hand, the coupling
function w(®) must decrease slower than 1/(£ — 2) when £ — 2 in order to
give the slowly accelerating expansion. After all, there are no alternatives
but .

Q)= ——, 49
w(®) = 5. (49)
(which would give the almost linear expansion,) for the Machian cosmological

solution. This means
dw B

de

The coupling function w(®) does not depend on ®. Therefore the solutions
(24) and (25) with Eqgs.(36), (37), and (38) are exact for all coupling param-
eter w. The constraint Eq.(43) for all £ (0 £ £ < 2) requires the condition
n > 3, which gives w < —3/2 when £ = 0 and avoids the singularity. For this
coefficient 1 > 3, the expansion parameter a(t) gives the extremely slowly
decelerating expansion except the early stage with £ = 0. We obtain a(t) =t
foré - 2ifn=23.

The scalar field ¢ for the coupling function w(®) = n/(£ — 2) is given as
the following and we get when £ — 2

8rp(t)t* 4mp(t)t?
E-2)+22m

which converges to a definite and finite constant in the limit. If we assume
n = 3, taking ¢, = 1.0 x 10°yr and the present gravitational constant
Go = 6.67 x 107 8dyn.cm?.g~! into account, we can estimate the present
mass density p, = 3.5 x 1072 g.em™3. If we adopt ty = 1.5 x 100 yr, we
obtain p, = 1.6 x 1072% g.em 3, which is very near to the critical density p, ~
1072 g.em™3. As the parameter £ — 2, the coupling function w(®) diverges
to the minus infinity and the gravitational constant approaches dynamically
to the constant Gu..

It should be remarked that the time-variation of the coupling function
w(®) = /(¢ — 2) is derived from that of the parameter £&. However, we have
not known the details of the physical evolution of matter in the universe yet.
Probably, our universe started (classically) from the Big Bang with £ = 0
(the radiation era), via the dust-dominated era (¢ = 1), and now must be
approaching to the negative pressure era (the quintessence era, v = —1/3,
€ = 2). According to the recent measurements [3] of the coupling parameter
(Jw| ~ 10%), we get € = 2 — € ~ 1073 from Eq.(49). Over 10 yr, the state

0. (50)

— const , (51)

o(t) = 5
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of the universe has been varying extremely slowly from ¢ = 0 to € ~ 1073,
This situation would solve the problems existing in the solar system and the
evolution of life in the time-varying gravitational constant. At t ~ 5x 10°yr,
the parameter € had already been small enough and the gravitational constant
did not differ much from the present value.

There is a discontinuity at £ = 2 for the Machian cosmological solution,
and so it is not reasonable that the universe continues to evolve beyond £ = 2
to the state £ = 4. Our universe must be approaching to the state £ = 2
for ever (t — +00). We require that the universe is closed (k = +1 ) for
this range of £ (0 £ £ < 2) to give the attractive gravitational force. As the
parameter £ varies in time extremely slowly (the quasi-static process) in this
range, we may regard that the parameter £ is constant when we execute the
derivative with respect to ¢.

When we deal exactly with the time-varying coupling function w@(®) =
n/(£—2), the expansion parameter a(t) does not show the slowly accelerating
expansion but rather the extremely slowly decelerating expansion (almost the
linear expansion). If this is not compatible with the recent observations, we
might need to introduce furthermore the cosmological constant to the present
Machian cosmological model.

We have no criterions to determine the coupling function w(¢) in the
generalized scalar-tensor theory of gravitation. We discussed some examples
here. They seem to suggest that it is not an arbitrary function of ¢ but
another scalar field which is derived from matter itself by another field equa-
tion. The scalar field ¢ was introduced to the Brans-Dicke theory through
the relation GM/c?R ~ 1. By the similar analogy, the relation w ~ 1/(£ ~ 2)
seems to require the existence of another unknown scalar field connected with
matter.

The next straightforward problem is to determine the time-variation and
the range of the parameter £(f). We need investigate the evolution of a scalar
field as dark matter in the universe.

Acknowledgment

The author is grateful to Professor Carl Brans for helpful discussions
and his hospitality at Loyola University (New Orleans) where this work was
done. He would also like to thank the Nagasaki Prefectural Government for
financial support.



Determination of the Coupling Function in the Generalized Scalar-Tensor Theory of Gravitation

References

[1] A.Miyazaki, gr-qc/0102003, 2001.

[2] C.Brans and R.H.Dicke, Phys. Rev. 124, 925 (1961).

[3] X.Chen and M.Kamionkowski, Phys. Rev. D60, 104036 (1999).

[4] D.B.Guenther, L.M.Krauss, and P.Demarque, Astrophys. J. 498, 871
(1998).

[5] S.Perlmutter, M.S.Turner, and M.White, Phys. Rev. Lett. 83, 670
(1999).

[6] P.G.Bergmann, Int. J. Theor. Phys. 1, 25 (1968).
[7) R.V.Wagoner, Phys. Rev. D1, 3209 (1970).
[8] K.Nordtvedt, Astrophys. J. 161, 1059 (1970).
[9] A Miyazaki, gr-qe/0101112, 2001,
[10] A.Burd and A.Coley, Phys. Lett. B267, 330 (1991).
{11] J.D.Barrow and J.P.Mimoso, Phys. Rev. D50, 3746 (1994).
[12] J.P.Mimoso and D.Wands, Phys. Rev. D52, 5612 (1995).
[13] A.Serna and J.M.Alimi, Phys. Rev. D53, 3074 (1996).
[14] J.D.Barrow and P.Parsons, Phys. Rev. D55, 1906 (1997).
[15] A.Billyard, A.Coley, and J.Ibanez. Phys. Rev. D59, 023507 (1999).

33



